La Organización Mundial de la Salud define farmacovigilancia como: "La ciencia y actividades relacionadas con la detección, evaluación, entendimiento y prevención de los efectos adversos u otros problemas relacionados con los medicamentos" y en España concretamente, la ley (RD FV 577/2013 de farmacovigilancia ) la define como: "Actividad de salud pública que tiene por objetivo la identificación, cuantificación, evaluación y prevención de los riesgos asociados al uso de los medicamentos una vez autorizados."
Las Reacciones Adversas se definen según dos parámetros:_Reacción adversa grave:
- .Pueda poner en peligro la vida.
- .Ocasione la muerte.
- .Exija la hospitalización del paciente o la prolongación de la hospitalización ya existente.
- .Ocasione una discapacidad o invalidez significativa o persistente.
- .Constituya una anomalía congénita o defecto de nacimiento.
- .Sea considerada importante desde el punto de vista médico.
- .Sospechas de transmisión de un agente infeccioso a través de un medicamento.
_Reacción adversa no grave:
Cualquier reacción adversa que no reúna ninguno de los criterios de gravedad mencionados.
Hay además situaciones especiales legisladas por ley y de obligado cumplimiento por todos los fabricantes o comercializadores de medicamentos donde es siempre obligatorio recoger la información disponible en los siguientes supuestos (a pesar de que no exista reacción adversa / Guideline on good pharmacovigilance practices (GVP) – Module VI ):
- .Uso durante embarazo (exposición materna o paterna vía semen): es necesario recoger el desenlace del embarazo.
- .Uso durante la lactancia.
- .Uso en poblaciones especiales (ancianos, niños...).
- .Sobredosis accidental o intencionada
- .Falta de eficacia
- .Mal uso / error de medicación / uso fuera de indicación / abuso
- .Exposición ocupacional
How COVID-19 has changed pharmacovigilance In the months since the coronavirus pandemic began, a number of COVID-19 medicines have been made available to the public at faster rate than would usually be possible, as drug regulators’ approval processes have been expedited in response to the demand.
Numerous countries have granted emergency use authorisation of new vaccines that are much needed, but for which very little data on adverse events (AE) is currently available. Ensuring the safety of these new drugs remains a priority – but are pharmaceutical companies’ pre-pandemic methods up to the task? At a time when medicines are needed so urgently, what steps must be taken to ensure pharmacovigilance remains effective?
Joe Rymsza, Vice President of Pharmacovigilance and Regulatory Technology Solutions at IQVIA, tells Pharmafocus that prior to the pandemic, pharmacovigilance was an area that had seen very little innovation.
...
“[Pharmacovigilance] has historically been a very conservative part of the organisation, and one that has not been on the forefront of innovation relative to their use of technology, so the automation of intake is something that accomplishes two benefits,” Rymsza explains.
“One is, it produces a result often with a much higher degree of accuracy and precision than can be done by a human. Similarly, their use of the technology is really critical to overseeing the increased volume of data that's being generated as a result of the global vaccine distribution.”
Adverse event reporting (AER) is one of the most time- and resource-consuming activities that regulatory bodies and drug companies must undertake, and involves the receipt, triage, entry, assessment, distribution, reporting, and archiving of AE data from numerous sources. According to Rymsza, the artificial intelligence (AI)-enabled automation of AER is a solution to the additional challenges the pandemic has presented to an already process-heavy area.
AI allows companies to collect and prepare adverse event data from a wide range of sources – including healthcare professionals, vaccine centres, social media, and news articles – quickly and accurately. Smart algorithms can scan countless documents and social media content to identify even obscure references to products and adverse events, with more accuracy and speed than is possible for human readers. AI-powered automation tools can also be used to automatically translate files in different languages, saving pharmacovigilance professionals a considerable amount of time and money, and significantly reducing the risk of errors.
Rymsza explains: “Essentially, you automate that intake, bring it into the system, do algorithmic processing of it using technologies like machine learning and natural language processing to extract the information from it, and expedite the preparation of the adverse event for someone to review.” (Más)
No hay comentarios:
Publicar un comentario